Page images
PDF
EPUB
[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

·

Je remarquerai, par rapport aux observations faites dans le cinquième spectre pendant les mois de mai et de juin, que, la fente du collimateur n'étant pas ajustée au foyer, les rayons sont sortis convergents de l'objectif de ce tube, ce qui m'a obligé de diminuer d'une quantité égale à 3,"9 les valeurs observées de l'angle . Cette correction fut trouvée par deux séries d'observations faites, toutes les deux, dans le sixième spectre, mais dans des circonstances différentes. Dans la première, j'ai employé le même tirage du collimateur qu'aux observations du cinquième spectre; dans la seconde, la fente fut exactement ajustée au foyer principal. En comparant entre elles les deux valeurs ainsi trouvées, j'ai obtenu la dite correction égale à 4,"8 pour le sixième spectre, d'où l'on tire le nombre 3,"9 pour le cinquième. Quant aux corrections de température, il se présente ici une difficulté qui je n'ai pas signalée auparavant, savoir celle de déterminer exactement la température du réseau. Comme il est presque impossible de connaître la vraie température du réseau, pour en déduire la correction nécessaire, j'ai cherché à en diminuer autant que possible l'échauffement dû aux

rayons solaires à leur passage par le verre. A cet effet, j'ai fait passer, avant son arrivée à la fente le faisceau de la lumière solaire à travers une couche d'eau, d'une épaisseur de 20 centimètres et renfermée dans un vase, dont les parois consistaient de plaques en verre suffisamment polies et parallèles. Mais, en comparant les valeurs de λ, déduites de ces observations, avec celles où l'on n'avait pas pris la dite précaution, je n'ai trouvé aucune différence sensible.

L'axe du collimateur fut dirigé, pendant ces observations, à peu près à 11,6 du sud à l'est. Je dirai enfin, pour ne rien oublier, que le verre même du réseau (II) présente en réalité la forme d'une lentille convexe, dont la courbure est toutefois très-faible, et de plus, que la distance de vision distincte est un peu différente des deux côtés de la normale du réseau. Cependant, pour qu'on puisse suffisamment comprendre combien est minime l'influence de ces défauts du réseau, j'ajouterai que, si l'on a disposé la lunette de manière à voir nettement la fente, quand le réseau a été enlevé, on distingue très-bien, dans le cinquième et dans le sixième spectre, le réseau remis à sa place et le point de la lunette restant invariable, la raie double de E.

Je pense donc que la valeur de la longueur d'onde de cette raie E, obtenue à l'aide du réseau (II), c'est-à-dire

Doublecentimètre.

doit étre regardée comme suffisamment exacte, et en outre, que l'erreur moyenne à craindre de cette valeur, pour autant qu'elle dépend des mesures de e et de , ne doit pas excéder ±0,05.

λε = 5269,13

E

B) Discussion des observations faites avec les réseaux (III) et (IV).

Pour vérifier encore les déterminations faites au moyen des réseaux (I) et (II), j'ai employé non-seulement le réseau noir (III), mentionné auparavant, mais encore un réseau (IV) tout-à-fait nouveau que m'avait envoyé M. NOBERT au printemps de cette année. Ce dernier réseau a 3601 raies, tracées sur une largeur de 9 lignes parisiennes. Par conséquent, en comparant entre eux les quatre réseaux (III), (II), (IV) et (I), on trouve que les distances de leurs traits se rapportent comme les nombres 2, 3, 4 et 5.

Les mesures de la largeur du réseau (III), prises par M. THALÉN, d'après la méthode employée pour les réseaux (I) et (II), sont réunies dans le tableau suivant.

Largeur du réseau (III).

[blocks in formation]

Largeur Tempé- Double-
centimètre.

observée.

rature.

+ 24,7

24,6

25,7

24,9

24,9

24,7 ||

Largeur

observée.

[blocks in formation]

Tempé

rature.

+ 25,0

26,8

26,1

26,8

26,8

+ 26,4

La moyenne 18,0509 à 25,6, réduite à 16° et corrigée pour les erreurs de la vis, devient 18,05373 et ainsi

on trouve

A l'aide de cette valeur de e et par les valeurs suivantes de

= 13° 29′ 53,"6 à

23,3 (8 observations)

23,6 (3 observations),

Фо

[ocr errors]

log e= 8,052447 10.

=

16° 15′ 57,"8 à

入E。

入E。

1er Spectre.

7604,8

j'ai obtenu pour A les valeurs suivantes:

=

λο

[ocr errors]

La différence entre cette valeur de λ et celle que j'ai obtenue à l'aide du réseau (II) n'est pas moins de 1,4, quantité beaucoup trop grande pour qu'on puisse l'expliquer par des erreurs d'observation. Le réseau (III), ne présentant, à l'examen sous le microscope, pas le moindre défaut par rapport à l'aspect et à l'écartement des raies, et le nombre de celles-ci ayant été vérifié comme parfaitement exact, il me fallut chercher ailleurs la cause de la différence trouvée. La seule circonstance que j'aie pu découvrir pour son explication, consiste en ce que le réseau est très-convexe, imperfection que j'ai pu constater d'une manière évidente, non-seulement au moyen du microscope, mais aussi en l'introduisant entre les deux lunettes du spectromètre. Remarquons de plus qu'en laissant invariable le tirage de la lunette, on n'obtient jamais par ce réseau des images bien distinctes sur les deux côtés de la normale du réseau. Il me semble donc qu'on doit attribuer la différence observée aux causes dont je viens de rendre compte, et qu'il s'ensuit que la valeur de λg, obtenue par le réseau (III), ne possède pas la même exactitude que celle trouvée à l'aide du réseau (II).

[ocr errors]

Ainsi, quoique le réseau ne soit pas doué de qualités assez bonnes, pour qu'il puisse fixer la position de la raie fondamentale E, il peut néanmoins servir avantageusement à la détermination de la raie A. Dans ce but, j'ai observé simultanément les raies D et A, et en admettant

5267,75

= 5267,73.

[blocks in formation]
[ocr errors]

Moyenne.

7604,1

Cette valeur de A, dont l'accord avec celle qu'a donnée le réseau (II) est presque parfaite, doit être sûre à une unité près. Mais, il faut le dire, la valeur trouvée se rapporte au milieu de la bande très-large dont consiste réellement cette raie et dont l'épaisseur est 13 unités d'environ.

[ocr errors][ocr errors]

Le réseau (IV), présentant au microscope des inégalités de division en plusieurs endroits, surtout vers l'un de ses bords, est inférieur en qualité au réseau (II). Il faut remarquer de plus, que, dans les spectres d'un ordre élevé, il est impossible d'obtenir, sur l'un des côtés de la normale, une image distincte et correcte de la raie double E, d'où il suit qu'on ne peut pas espérer d'arriver, par l'emploi de ce réseau, à des résultats bien exacts. Voici un autre phénomène assez curieux que je n'ai jamais observé auparavant: le troisième spectre est traversé, sur l'un des côtés de la normale, `par des bandes colorées, fort larges, qui rendent l'observation de ce spectre singulièrement difficile.

Les mesures de la largeur du réseau (IV), faites aussi à l'aide du double décimètre de la vis, dont nous avons donné déjà la longueur exacte, ne furent cependant pas répétées, comme à l'ordinaire, le long du double-decimètre, mais furent prises seulement à quatre endroits de sa longueur. Les nombres trouvés, réduits à la valeur moyenne du double-décimètre, sont les suivants:

Largeur du réseau (IV).

Double-centimètre.

400-420

460-480

500 - 520
520-540

Moy.

2e Spectre. 4e Spectre.

Largeur réduite.

=

5270,53

m.m.

Ainsi, la largeur en question. exprimée en mesure métrique à 16,0, sera 20,31377 et par suite

log ev βιν = 7,751488 d'où l'on tire les valeurs suivantes de A, 4ième et le 5ème spectre:

20,31134

20,31025

20,30984

20,31024

20,31042 à + 24,1.

10,

obtenues par des observations dans le 2ième, le

[ocr errors]

5 Spectre. Moyenne.

5270,36

5270,48

Comme on le voit, cette valeur de λ dépasse de 1,4 la valeur donnée par (II), et elle est ainsi tout juste le même nombre de fois plus grande, que la valeur obtenue par le réseau (III) était trop petite. La différence trouvée, qu'on ne peut expliquer par des erreurs d'observation, doit dépendre presque entièrement des imperfections du réseau.

En résumé, la moyenne des deux déterminations, faites avec les réseaux (III) et (IV), quoiqu'elles soient de beaucoup inférieures en exactitude à celles des réseaux (I) et (II), peut servir néanmoins comme une espèce de vérification de la valeur obtenue par les deux autres réseaux.

5270,46

7) Coincidence des raies des spectres de différent ordre.

L'accord presque parfait qui existe entre les deux séries de valeurs trouvées par les réseaux (I) et (II), nous autorise à conclure que ces valeurs doivent étre justes à 0,1 près, exactitude qui sera sans doute assez satisfaisante dans la plupart des cas. Cependant, pour vérifier ultérieurement l'exactitude relative des nombres obtenus, je me suis aussi servi d'une méthode nouvelle, autant que je sache, et susceptible d'une précision très-grande. Elle consiste dans l'observation des coïncidences que présentent les raies des spectres de différent ordre. Mais, pour qu'on s'en puisse servir avantageusement, elle exige avant tout un réseau de qualité supérieure. Il faut de plus que les rayons incidents soient normaux au plan du rẻseau, et qu'on fasse des observations des deux côtés de la normale; car, si le réseau n'a pas été parfaitement ajusté, il arrive que les raies obscures appartenant aux spectres de différent ordre, se déplacent inégalement des deux côtés de la normale du réseau.

La méthode en question a été employée de préférence dans la détermination de la longueur d'onde de la raie G, dont les valeurs, trouvées par des observateurs divers, présentent des discordances fâcheuses.

Les déterminations de cette raie à l'aide du réseau (II), ont, je le crois, toute l'exactitude désirable. Dans le cinquième et le sixième spectre, j'ai pu discerner d'une manière parfaite la raie noire G, des bandes obscures et très-larges, formées par la réunion d'un grand nombre de raies plus faibles, qui se trouvent principalement placées vers le côté de la moindre réfrangibilité. En outre, comme nous le prouve le tableau page 19, les mesures de cette raie sont très-concordantes entre elles. Cependant, pour ne rien laisser à désirer au point de vue de l'exactitude de cette raie, je donnerai, en détail, le résultat trouvé par la nouvelle méthode.

Comme l'indique la figure ci-contre, la raie G du sixième spectre et une autre raie du fer du quatrième se trouvent situées entre les deux raies b, et b, qui appartiennent au cinquième spectre. Supposé maintenant qu'on connaisse la longueur d'onde de b, du 5ème spectre, et qu'on en mesure exactement la distance de la raie G, observée tout auprès, on aura de cette manière la longueur d'onde de la raie G à sa place actuelle dans le 5ième spectre, puis, par une réduction très-facile, la longueur d'onde qui correspond à la position véritable dans le spectre du 6ieme ordre.

[ocr errors]

b

En opérant de cette manière, j'ai trouvé par des déterminations faites sur les deux côtés de la normale du réseau, la distance entre la raie b, et celle de G égale à de la distance entre b, et b. Les longueurs d'onde conclure qu'une raie du 5ème spectre qui coïnciderait

Go

de b, et b étant connues, on en peut avec G, aurait la longueur d'onde

5168,80;

et en multipliant ce nombre par, on aura enfin pour G λα = 4307,33.

[ocr errors]
« FyrriHalda ßfram »