orbits in adult human beings. But, if we trace back the nasal chambers to their origin in the embryo, we find, that, to begin with, they are mere depressions of the skin of the fore part of the head, lined by a continuation of the general epidermis. These depressions become pits, and the pits, by the growth of the adjacent parts, gradually acquire the position which they finally occupy. The olfactory organ, therefore, is a specially modified part of the general integument. The human ear would seem to present greater difficulties. For the essential part of the sense organ, in this case, is the membranous labyrinth, a bag of complicated form, which lies buried in the depths of the floor of the skull, and is surrounded by dense and solid bone. Here, however, recourse to the study of development readily unravels the mystery. Shortly after the time when the olfactory organ appears, as a depression of the skin on the side of the fore part of the head, the auditory organ appears as a similar depression on the side of its back part. The depression, rapidly deepening, becomes a small pouch; and then, the communication with the exterior becoming shut off, the pouch is converted into a closed bag, the epithelial lining of which is a part of the general epidermis segregated from the rest. The adjacent tissues, changing first into cartilage and then into bone, enclose the auditory sac in a strong case, in which it undergoes its further metamorphoses; while the drum, the ear bones, and the external ear, are superadded by no less extraordinary modifications of the adjacent parts. Still more marvellous is the history of the development of the organ of vision. In the place of the eye, as in that of the nose and that of the ear, the young embryo presents a depression of the general integument; but, in man and the higher animals, this does not give rise to the proper sensory organ, but only to part of the accessory structures concerned in vision. In fact, this depression, deepening and becoming converted into a shut sac, produces only the cornea, the aqueous humour, and the crystalline lens of the perfect eye. The retina is added to this by the outgrowth of the wall of a portion of the brain into a sort of bag, or sac, with a narrow neck, the convex bottom of which is turned outwards, or towards the crystalline lens. As the development of the eye proceeds, the convex bottom of the bag becomes pushed in, so that it gradually obliterates the cavity of the sac, the previously convex wall of which becomes deeply concave. The sac of the brain is now like a double nightcap ready for the head, but the place which the head would occupy is taken by the vitreous humour, while the layer of nightcap next it becomes the retina. The cells of this layer which lie farthest from the vitreous humour, or, in other words, bound the original cavity of the sac, are metamorphosed into the rods and cones. Suppose now that the sac of the brain could be brought back to its original form; then the rods and cones would form part of the lining of a side pouch of the brain. But one of the most wonderful revelations of embryology is the proof of the fact that the brain itself is, at its first beginning, merely an infolding of the epidermic layer of the general integument. Hence it follows that the rods and cones of the vertebrate eye are modified epidermic cells, as much as the crystalline cones of the insect or crustacean eye are; and that the inversion of the position of the former in relation to light arises simply from the roundabout way in which the vertebrate retina is developed. Thus all the higher sense organs start from one foundation, and the receptive epithelium of the eye, or of the ear, is as much modified epidermis as is that of the nose. The structural unity of the sense organs is the morphological parallel to their identity of physiological function, which, as we have seen, is to be impressed by certain modes of motion; and they are fine or coarse, in proportion to the delicacy or the strength of the impulses by which they are to be affected. In ultimate analysis, then, it appears that a sensation is the equivalent in terms of consciousness for a mode of motion of the matter of the sensorium. But, if inquiry is pushed a stage farther, and the question is asked, What then do we know about matter and motion? there is but one reply possible. All that we know about motion is that it is a name for certain changes in the relations of our visual, tactile, and muscular sensations; and all that we know about matter is that it is the hypothetical substance of physical phenomena-the assumption of the existence of which is as pure a piece of metaphysical speculation as is that of the existence of the substance of mind. Our sensations, our pleasures, our pains, and the relations of these, make up the sum total of the elements of positive, unquestionable knowledge. We call a large section of these sensations and their relations matter and motion; the rest we term mind and thinking; and experience shows that there is a certain constant order of succession between some of the former and some of the latter. This is all that just metaphysical criticism leaves of the idols set up by the spurious metaphysics of vulgar common sense. It is consistent either with pure Materialism, or with pure Idealism, but it is neither. For the Idealist, not content with declaring the truth that our knowledge is limited to facts of consciousness, affirms the wholly unprovable proposition that nothing exists beyond these and the substance of mind. And, on the other hand, the Materialist, holding by the truth that, for anything that appears to the contrary, material phenomena are the causes of mental phenomena, asserts his unprovable dogma, that material phenomena and the substance of matter are the sole primary existences. Strike out the propositions about which neither controversialist does or can know anything, and there is nothing left for them to quarrel about. Make a desert of the Unknowable, and the divine Astrea of philosophic peace will commence her blessed reign. XI. EVOLUTION IN BIOLOGY. In the former half of the eighteenth century, the term "evolution" was introduced into biological writings, in order to denote the mode in which some of the most eminent physiologists of that time conceived that the generation of living things took place; in opposition to the hypothesis advocated, in the preceding century, by Harvey in that remarkable work * which would give him a claim to rank among the founders of biological science, even had he not been the discoverer of the circulation of the blood. One of Harvey's prime objects is to defend and establish, on the basis of direct observation, the opinion already held by Aristotle; that, in the higher animals at any rate, the formation of the new organism by the process of generation takes place, not suddenly, by simultaneous accretion of rudiments of all, or of the most important, of the organs of the adult; nor by sudden metamorphosis of a formative substance into a miniature of the whole, which subsequently grows; but * The "Exercitationes de Generatione Animalium," which Dr. George Ent extracted from him and published in 1651. |